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Abstract A bifurcation method has been applied to the plastc stability analysis of a bimetallic
sheet between rigid surfaces subjected to buaxial loading. An orthotropic. incrementally-linear solid
and plane strain conditions are assumed. In order to predict the stability behaviour near the
bimaterial intertace. three possible regimes (elliptic. hyperbolic and parabolic) are considered and
two modes of instability are mentioned. namely. the diffuse mode. characterized by spacially periodic
detormations. and the localized shear band mode. In general. undulations can be expected in the
elliptic regime and shear band instabilitics only appear in the hvperbolic and parabolic regimes.
Attention is concentrated on the diffuse mode. Critical equivalent strains have been obtained. as a
function of a wavenumber defined in the analysis. Numerical results are presented for three different
constitutive models and for a number of combinations of the geometric and material parameters.
to assess their influence on the critical strain. Copyright ¢ 1996 Elsevier Science Ltd.

I. INTRODUCTION

Much effort is currently devoted to the design and processing of bimaterial products because
of their potential ability to combine physical and chemical properties of different materiais.
This is a very attractive feature in specific industrial technology. For instance, consider the
use of bimetallic structures in applications where it 1s desired to combine a high mechanical
strength and a good protection against oxidation and corrosion.

One problem encountered in some metal forming processes of bimaterial layers 1s the
appearance of thickness fluctuations and occasional decohesion along the interface. basi-
cally due to the material heterogeneity and high strains during those processes. The analysis
of this phenomenon. under the point of view of bifurcation and plastic stability, has
motivated the present paper.

Stability of plastic solids has become a relevant research topic in the fields of plasticity
and metalworking. In the case of a single material. Hill and Hutchinson (1975) and
Young (1976) investigated the bifurcation phenomenon in an homogeneous incompressible
rectangular block subjected to uniaxial stress under plane strain conditions. Later,
Hutchinson and Tvergaard (1980) considered the existence of surface instabilities in a semi-
infinite solid with frec boundaries by using either a bifurcation analysis or a quasi-static,
imperfection-growth analvsis. A strong dependence on the type of constitutive law assumed
was found. These analyses show that instabilities are predicted when a finite strain deformation
theory is assumed. More recently, Dudzinski and Molinari (1991) have analysed the ther-
moviscoplastic instabilities in a matenal subjected to biaxial loading by using a perturbation
method, which is proposed as an alternative to the bifurcation method. In this analysis, the
rate of growth of infinitesimal perturbations is obtained for quite general material behaviours.

The analysis 1s more complex in the bimaterial case. Steif (1986b} has considered the
periodic necking instabilities of a solid composed of alternating material layers under uniaxial
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Fig. 1. Geometry of the probiem.

tension. Conditions for periodic incremental deformations, consistent with an overall homo-
geneous stretching. are obtained. The competition of the undulatory modes with shear local-
ization is also examined. More recently. Tomita and Kim (1992) have considered the non-
axisymmetric bifurcation behaviour of bilayered tubes subjected to uniform shrinkage at the
external surface in plane strain. 1t is concluded that the yield stress ratio and the hardening
exponent ratio substantially affect the bifurcation mode with long wavelength. Independently,
Suo et al. (1992) have investigated the stability for two semi-infinite solids bonded with a planar
interface. A traction-displacement jump relation characterizes the interface, so that dimensional
considerations introduce a characteristic length. Stability is analysed. with the aid of complex
variable methods. in terms of the existence of certain stationary waves.

In this paper. we are concerned with the instability analysis of a bimaterial layer placed
between rigid surfaces and subjected to biaxial loading. The existence of non-uniform selutions
is investigated by using a bifurcation method. This method is similar, to some extent, to that
of Steif (1986b) in uniaxial tension : but here we proceed with other boundary conditions and
biaxial stress states. and furthermore. a different resolution procedure and a more complete
analysis are presented. The bifurcation equation for the problem is established and solved
numerically to obtain a critical strain in terms of a characteristic wavenumber, for different
values of the geometric and material parameters of the process. The influence of the relevant
parameters on the bifurcation behaviour is discussed.

Three different constitutive models are considered in the calculations (the so named Voce,
Prager and Hollomon models). [n the bibliography. attention is given especially to the last one,
the Hollomon model. which is not adequate to describe the actual material behaviour at high
plastic strains, especially at high temperatures. The two other models seem. however, more
appropriate under such conditions.

[t should be noted that this study could be applied, as a first approximation, to different
metal forming processes involving a bimaterial composite under a biaxial stress state.

2. GOVERNING EQUATIONS

Consider a plane bilayer consisting of two materials with finite thickness and infinite
length: 4 (between \-» = ¢ and x» = h) and B (between x, = b and x» = ¢). the set being limited
by two rigid surfaces fixed at x, = ¢ and v, = ¢. as shown schematically in Fig. 1.

Incompressibility, plane strain conditions, as well as time independent behaviour, are
considered in the model. Assume that the deformation up to a certain instant is homogeneous,



Intertace stability [ 605

with principal axes x, and v.. and that both materials. 4 and B, are orthotropic along these
axes.

Assuming that the hvdrostatic pressure does not influence the constitutive relation between
the deviators of stress rate and strain rate, the constitutive law for incrementally linear solids
necessartly has the following structure (Biot. 1965) :

Gy =0 = 2%y =)

G, =y G- =0y (N

where @, is the Jaumann derivative (referred to the rotating axes) of the true stress: ¢, 1s the
eulerian strain rate. &, = (r,,+¢,,) 2. ¢, being the velocity and (), denoting partial differentiation
with respect to x,. pand g* are two incremental shear moduli. At the moment of the analysis,
the stress components are ¢,, = g, and 7., = a-. [t 15 assumed that the current stress components
are uniform in each material. As shown in Fig. I. ¢, can be different in 4 and B.

It is convenient to express (1) in terms of nominal stress rates ;. which are related to
Jaumann derivatives and true stresses through the expression:

‘v
.=, 0,0, ~ G W, =T, . (2)
Y

. —1, ) 2. and the convention of summing over repeated

where i, is the spin tensor. w, = (¢
indices is applied.

By using the incompressibility condition (r;, = 0) and introducing a flow function i(x,. x-)
so that r) = &y Cxa. 0= — A . the equilibrium equations 7, = 0 lead to the following
partial derivative equation:

/ | ) Ch | I
(;H— oy -02) ) A {/ +202p* =) // . +(‘u— Nt 763)) ‘—l{{ =0 (3)
. = ITAS CNTOXS . ~ /X3

This cquation can also be obtained as a partcular case of a more general equation deduced in
Appendix A.
On the other hand. the continuity conditions at the interface are:

=t N
R
at . =h 4)
= "’[:j:
i o=nf

where the third equation replaces. for convenience. the continuity condition of the normal
component of the nominal stress rate.
Equations (4) can be rewritten in terms of \ as:

iy YRV
C - = 4111 v =10
VO L OXa
o o\ Yy a —aNC P
\(411*—;4~ 13 ‘)A“f(/1~ '77);‘\:()
- JOX7CXS \ P ARSE
o 4o\ CT g, =GO
(uf o ) ””+</,J' | ) (5)
2 2y D Sl
= /N \ - SN
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where the sign < > indicates the change in the enclosed magnitude on crossing the interface at
Xy = h
Finally. the boundary conditions are expressed as:

=0 at x.=ua
¥=0 at v, =¢ (6)
and in terms of i :
2] B 7 )
cxy L, XL
Equation (3) is more shortly written as:
‘\4 (~4 -\4
(R+S) ——l/'m 1—R) —,i//—+(R S)l 0. (8)
cxy CXTOXG
with the following notation :
T 6,0,
R=:-. S=—— 9
2u* 4u* ©)

3. EIGENMODES AND BIFURCATION EQUATION

Suppose that an increment in the far field displacements is applied at a given instant. We
confine attention to analysing whether a non uniform solution is possible. In particular, let us
seek for periodical solutions at the neighbourhood of the interface in a separate variable form,
as follows:

dny,

Y= f(x, )sm~/'~ (10)

where /. is the wavelength of the deformation in the x| direction and f{.x») has to be selected so
that ¢, and ¢ verify the continuity conditions.

When (10) 1s introduced in (8). a fourth-order differential equation 1s found for the
function f. whose characteristic equation has the following roots:

_(R=D=, (R—1)—(R°=5Y

PN : (11)

There will be. in general, two distinct roots for =, the character of the solution depending on
whether the roots are real or not. Following the classical notation used in this field, the regime
15 said to be elliptic (£), hyperbolic (H) or parabolic (P) according to whether there are zero,
four or two real roots, respectively. for the characteristic equation. Some comments on the
meaning of the characteristics of (8) are included in Appendix B. In view of (10). the three
regimes are determined by :

(Eyzerorealroots: R>(1+S57)2 or (1+S)2>R>S and R<| (12a)
(H)fourrealroots: S< R<(14+57)2 and R > (12b)
(P)tworeal roots: S >R (12¢)

Not all the values of R and S are possible. As demonstrated by Hill and Hutchinson
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(1975), there is a condition excluding the possibility of first-order bifurcation for incrementally
linear materials. This condition is associated with the principle that the loads do less work than
expended internally. and leads to the relations:

5 N
gi+os

0<o,40. <4p* and - < 2pu (13)
g, +0-
In terms of R and S (for positive R and S):
a7 + 03 . G0
R> ——=8=aS and S< - -~ =b (14)
g; — 05 G, +0,

If ¢, >0, >0. then @« > | and b < 1. For this case. Fig. 2 shows the different regions and
boundaries in the space R— S (R > 0.5 >0). Note that the elliptic zone contacts the hyperbolic
region (for S > 1) as well as the parabolic region (for 0 < § < 1).

3.1. Elliptic regime in A and B

According to (12a). there will be no real roots in 4 and B when R > (1 +5%)/2 or both
(1+5%2> R> S and R < 1 are satisfied in each material. The functions f, and f, which
make the boundary conditions (7) be verified can be expressed- -for a symmetric mode and
Xy > (—-as:

A

falxa) = ‘.R{h, csin %X 411)} (15a)
/.
s

falns) = ‘R{/z: sin i”/f(f‘xz)} (15b)
/.

where R denotes the real part of the enclosed quantity, &, and A, are complex constants. and.
according to (11),

2R=1+5"
R=a§
R R=S
ELLIPTIC /HYPERB,
NO |
I —
1 ..............
bl
S

Fig. 2. A representation of the characteristic regimes.
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L R—TE SR, 4]
AL e s 16a

* R—l - S.~1 ( )
R SR

g2 = B =N 16b

f 25 (160)

By imposing the continuity conditions (35) at the interface and after doing some algebra,
the following homogeneous system is obtained

Rl singx—h, - singgfil =0
R/ xrcosqgx+hfrcosggfl =0

RUUR, =S —(R+S,=2)]xcos g2+ hs[(Ry— Sp)f* — (Ry+ Sp—2)1Bcos gz} =0

R, [xz(Ra =S —(R,—5))] 51.“‘141*s:/’:[/)u(RB—S/f)‘(RB*S;R)] Sin‘]Bﬂ}‘ =0 (7
where

L0 0, on ; 2n Y

S = 4 94=" (h—a) qy= ';«T(C‘*b)- ¢ = it (18)

The resolution procedure of the equation system (17) is as follows: from the first two
equations of (17). we express the real and imaginary parts of 4, in terms of those of 4, ; then
they are inserted in the last two equations of (17) and 4, is eliminated. After lengthy manipu-
lations and denoting x = p,+ir . = py+ir,. the following bifurcation equation is deduced :

N K . LS 5 Al sE P
(R4‘~S.z) [/‘4(]“54)—5.4]4‘f[X4(l_~S|)+S4] o
1/’1 Fy Ps  Tm

st s st ,
+;‘{' - :|(RHSB){, [Xp(1—S5) — Sl + f[Xy(l—SB)“FSZ]}
Pr g

ER
;j{j(R SR = SpX (¢ + N — e+ X — )T +¢)]

st shoost 8 s#
+2(1 ‘*S,})(RBSB)[ h— ’:l([?;fé‘,lf‘F"BSF)“'(] -8l _S;J)|: ho— ’:”:p — :|
Py Fy P+ FTalPs T

+4HR, — S HRy— SB)(F'!S: +"45)4)(Pﬁ“‘f‘*‘"ﬁ«*‘f)

B B
+2(1-S}4)(R1—S,)[’\” ' }(pﬂ-,wr,s;ﬂ)}: 0 (19)

S,
Pr  TIs

where. to be concise. the following notation has been used:

5, =sin2pg. ¢, =cos2py. s, =simh2rq. ¢, = cosh2rg (20a)
X = (R+S)(R—S) (20b)

ST+
5= (RS’-~ o ),(R~5) (20¢)

and p,. r, are given by
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. 2R, 48,1 Si+l

Pr=5 R, =5y TR, S

(20d)

.11, Particulur cases. Consider now two particular cases: (a) 4 monomaterial case and
(b) a bimaterial case under uniaxial state. Since these cases are reported in other related papers
mentioned in Section 1. they will be used to check the consistency of all the results along this
section.

(a) Monomaterial case

Suppose that & — 0 (i.e.. uf = 0 or % — » ). This situation is equivalent to the case of
only material A existing. Then (19) reduces to

rsin2gp, ST HX(-S8Y) ol
pysinh2g,r, S,-X,(1-S,) -
Moreover. in a uniaxial problem. (21) changes into
= sin}g{[’)i — S’+‘XT,L(,I 5 (22)

posinh2g,r, S, — X (1 —75,)

which coincides with the result obtained by Hill and Hutchinson (1975) for a single rectangular
matenal under tension.

Similarly. in the case ¢ — » (% = 0oru} — «). as it only material B is present. we
obtain

P singc@pi _ Sj + X,(1 - Sy)

Py sinh 2ggry CSE— X *?H)

which is exactly (21) by replacing 4 by B.

(b) Uniaxial state

If one of the biaxial stress components 1s negligible (for example, ¢, « g)). then:
S x> S=xo4p*: S" = S.and (19) reduces to the solution presented by Steif (1986b).

3.2, Hyperbolic regime in A und elliptic in B
Let us now analyze the case of A being in the hyperbolic regime (B remaining elliptic).
Then. according to (12b). there will be four real roots in 4 when the conditions

|+$i

By

>R,>S, and R, > 1 (24)

are fulfilled. The appropriate function /| is now written -also for a symmetric mode- as:

2n on
Fxy=c¢pcsin op s —a)H+cacsin r (v —a) (25)
’ ’

where ¢, and ¢, are real constants. and p> > 0 and 3 > 0 are the solutions for »~ (see (16a)).
The function f5 1s given by (15b), f° remaining complex in the form 7 = pg+ir, (see (16b)).
It can also be checked that the function i, obtained from f, satisfies the first boundary
condition 1n (7).

The continuity conditions at the interface (5) lead to:

CorsinpLg e tsing g, = R -singgf)
CPatCOSP g st CosT g, =Ry —hsc ffrcosgf)

=R, =S¢ P COSP LG+ P COST L4 )
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(R =S pieospag et ricosryg,) = S(2—Ry—Sp)R{—hy* fcosq,f)
+(Ry = Sp) R —hy* - cos )]
(R, =S e pasinpag,+cyrisinr, g —(R,—S)(c, *sinp,q,+c,-sinrqy)

={[(Ry—Sp)NR A - ﬁ: singpfi — (RB_S/B)m{hZ *sin ‘Isﬁ}]- (26)

By expanding the ‘R terms in (26) and eliminating the constants ¢, and ¢, the following
bifurcation equation can be obtained :

(R =S Iv=p3) WO, —(k—r)y W, O [rsst —pus’]
= 28R, = SRy —Sp) [(k = p WO, — (k= r )W O [rp(1 + Xp)sy
+pal X = D57 = para(py — r)IW W — ) + X0 Q(F + )]
2Ry = Sp) W0, = WO rpl(V = S X — SElsk +psl(1 — Sp) Xp+ SilsPl} = 0

(27)
where the new notation is:
R,—S,
po ot !
R,—S,
O, =sinpg, Q,=sinrg. W,=pcospq. W, =rcosry. (28)
3.2.1. Particular cases. (a) Monomaterial case
If £ - 0 (i.e., only material A is present). we obtain the following solution :
ronpg, _ <—> 29)
patant g, Wy—PDa

Now, if the stress state is uniaxial, then », = 1 and we recover the solution by Hill and
Hutchinson (1975) for the tension test of a rectangular material.

Likewise, if £ — 2 (only B), we attain to the same expression given by (23).

(b) Uniaxial state

For the umaxial stress case, the solution can be obtained by setting k = 1 (in A) and
§" = §" = S (in B). and coincides with that of Steif (1986b).*

3.3. Hyperbolic regime in A and B

Now consider the situation where both materials are in the hyperbolic regime. Then
relations (12b) hold in 4 and B.

The functions f, and f, are now given by :

2n C2n
f4(xs) = ¢, *sin = Pa(Xs—a)+c¢-sin N ri(x.—a)

. o 2n C2m
fu(x2) =d, sin ; pele—x5)+d- '31n7r3(('—_\‘2) (30)

where p; and r; are the solutions for o°: pz and r; are the solutions for f* (see (16a,b)), and
¢ e di.dye Rt is easy to check that the corresponding y functions verify the boundary
conditions (7).

The interface conditions lead to:

+ An error in Steif (1986b) [eqn for case (i) in Appendix] has been detected : on the second line. (1 —p3)?
and (1 —r3)° should not be squared and read as (1 —p3) and (1 —r3).
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GOl +0e.0/—dQf—d.QF =0
oWl Wird Wi+d WP =0
O+ 0 e, W00, =0 ) W+ 20, +0,)d W+ E0vg— ) d WP =0

=800 +(w, +0 ) Q) — 20, — Og)d, Q,’f~§()1‘3+()3)d:Qf =0 3
where Q... Q,. W, and W' are again given by (28) and

w=1-5

= S"—2R+1. (32)

The elimination of the constants ¢,. ¢-. d, and . can be accomplished by imposing the
vanishing of the determinant of the system. After several manipulations, the following bifur-
cation equation is achieved :

(Ry =S [k, —p ' W/Q,) — e =V QW NQIW! — QW ! + 2 (Re — Sp)°
*[(Ky=pu) WPO)— Ry —ri) QPWINQ W — Q)W) +2UR, — S.)(Rs— Sp)
X [y =P K —pR)O OFW WP+ (k= ri )k —r) O, QEW I WY
— K =P =1 Q )OI WIWE — (1, — 1 Wk — pp) O QEW WY
+ l(p‘] — QO WIEWE+ QFOQIWIW )] = 0. (33)

3.3.1. Particular cases. (a) Monomaterial case
For 2 — 0 (only material 4). (33) turns into {29). And for & — x (only B), the resultant
expression is:

s tan B TRY
rptanpeqy _ (M !,ff) (34)

pPtanrggy Ke— D/

which is the same as (29) by replacing 4 by B

(b) Uniaxial state

For the uniaxial stress state. the solution can be obtained by replacing k, = | and kj = 1,
and is coincident with that of Steif (1986b).

3.4, Parabolic regime in A. elliptic in B
Finally. consider the case where A4 1s in the parabolic regime (only two real roots) and B
remains elliptic. For this case:
R, <S, (35)

and the elliptic relations given by (12a) hold in B. The function /| is now written as:

2n Y s
fax)y=c¢ ssin . py(xs—dal+cescsinh oo, (xs—a) (36)
/. /.

where
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. —(R=)+ ST-2R,+]
SAVR—I

Pi= >0

L RDF SR

ry SR, (37)

It 15 interesting to note that eqn (36) for the parabolic regime in 4 can be reduced to the
hyperbolic one by replacing r, by ir, {where 1 = |, — 1) in (25) and making use of the identity
sin(ix) = 1sinh (x). xe'R. Therefore, we can obtain the bifurcation equation for this case
directly from (27) as:

(Ry =S [k —p ¥7Q,) — (w+r7) WG [rgs) — pys’] —23(R, — S,)(Rs— Sa)
XAk =p )V O = (kP WG g+ X )5k + pa(X g —1)s7)
—psrapa )WV =)+ XG0, (e + )]
+ 2Ry =SV O = WG gl = S X s — Sils)
+pel(1 =S X4+ Suls?]} =0 (38)

where
V' =r,coshr,y,. G =sinhr,q,. (39)

3.4.1. Particular cases. (a) Monomaterial case
If & — 0 (only 4). (38) reduces to:

N2

rotanpg, <h‘ ot (40)
pitanhr,g,  \x, *pi)

which coincides with that deduced by Hill and Hutchinson (1975). This solution could also be
obtained from (29) by replacing r, by ir,.

On the other hand. it J — ¢ (only B). solution (23) 1s attained.

(b) Uniaxial state

We could also obtain the solution for the uniaxial case, by setting x = 1 (for 4) and
S = 8" = § (for B) in (38). This instance is not considered by Steif (1986b).

4. RESULTS

In this section. the results obtained for the bifurcation strain as a function of different
geometric and material parameters are presented. The material is assumed to obey a constitutive
equation in the form

6 = G() 41

where & and # are the equivalent stress and strain, respectively. Three constitutive models have
been considered in the calculations :

(i) Vocemodel: &= C(l—nre ) 42)
(i) Hollomon model: & = k& (43)
(iti) Prager model: & = Ctanh (1) (44)

where C_ k. nm1, n are constants.
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Table |. Constants in the constitutive models
(95% criterion)

Model Constants
Voce C=Y m=1 n=12
Hollomon A=Y n=10.04
Prager C=Y n=73

From several torsion tests (Lopez-Soria. 1993), performed on steel AISI 4130, Inconel 625
and Incolloy 825, at high temperatures and strain rates (similar to those of hot metai forming),
it can be concluded that:

a peak stress is reached at an equivalent strain of about 0.25.
by neglecting the small influence of softening by dvnamic recovery, a perfectly plastic
behaviour could be assumed beyond that peak stress.

Accordingly. constants in (42)-(44) have been selected so as to give 95% of the maximum
stress. Y. at an equivalent strain of 0.25. The resulting values are included in Table 1. The
stress-strain curves obtained with these constants are compared in Fig. 3. Experience confirms
that although the Hollomon model provides a4 good approach for small strains. the other two
models behave more accurately at high strains.

For 4 constitutive law in the form of (41). the magnttudes R. S, S and 2. defined by (9)
and (18). are given by :

Ro M _n3dcoth(( 3 o oo (3T
2u* 2 dé ) i 2 de
dz dz
G g+ } Gy - 1 _ (d(7' Sji)ﬁ (453)
LV I Four (deiday, )
dz

where a,, 1s the hydrostatic stress, the incremental shear moduli are defined by the relations :

1.2 T ' T T . T T

Hollomon

0.8

0.6

04

0.2

equivalent stress normalized to the yield stress

0 A X L 1 I L "
0 02 04 0.6 08 1 1.2 1.4 1.6

equivalent plastic strain

Fig. 3. Normalized equivalent stress-strain curves tor the three constitutive models.
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21 = (g, —0o.)coth (s, —&.) = (0, —0a.) coth 2&,)

_doy=0:) _1dlo, —0,)

2k = =2 — = 46
die; —e,) 2 de, (46)
and the equivalent stress and strain for plane strain conditions are given by :
B3
G = \/iﬂ”a' =75 (0, —0,)
b
de = /'}dé.{), def, = —- de, (47)
V- N

The expressions for R, S, S" and & for the three constitutive models are included in
Table 2.

From an inspection of (45), it can be seen that the parabolic regime is not possible for the
second constitutive relation (41), because the condition R < S can never be accomplished
(cothx > 1, xeR). Therefore, only elliptic and hyperbolic regimes are to be considered. The
limit between both regimes is defined by the conditions: 2R—1 = §* and R > 1. This limit is
shown in Table 3 for different values of the hardening exponent, #, in the constitutive laws,

The bifurcation equations presented in Section 3 can be solved numerically in terms of the
wavenumber ¢, (= 2n(b—a)//) to obtain the strain eigenvalues. For each wavenumber, a set
of solutions is obtained. The critical equivalent strain will correspond to the minimum of these
eigenvalues. Below this minimum. no bifurcation occurs. Calculations have been carried out
for different values of the geometric and material parameters involved in the model, and for
the different constitutive laws.

The range of wavelengths used in the figures has been estimated in terms of the geometric
dimensions of the problem. If 4 denotes the amplitude of the wave and m the amplitude relative
to the thickness. # = A/(h—a). then the wavenumber can be rewritten as

2n A

m s

qq= (48)

For a typical relation 4.2 = 0.1 (see Gao. 1991) and assuming that the amplitude 4 varies
between 10 and 20% of the thickness b—a (m = 0.1-0.2), the wavenumber g, should vary
between 3 and 6.

Table 2. Expressions of the parameters in the bifurcation equation for the three constitutive models

3 /e N _ 3 /et 3
Voce R=%-(% —1)cothiy 30) S:\ﬁ'—(~- 1]
n \m J n \m
. R 7, Cgmgn _
a=C(l—-me ™) S= - - P BB
- Crnme ™ Cmgn,
3 - 3z
Hollomen R=" coth (. 3F R
2 on 9 2on
, . 3 6 fly
= kB S =3 =k O
< kn ! na
Pr: \31‘_ InF o 15 \51,'}1')—»
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Table 3. Limit strain between elliptic and hyperbolic regimes for the three
types of constitutive equations and for ditferent hardening parameters

i g Yate=0.25 elliptic-hyperbolic limit

Voce equation

+4 0.63 0.595
8 0.865 0.415
12 0.65 0.33
16 0.98 0.273
Hollomon equation
0.1 0.87 0.37
0.076 0.90 0.32
0.04 0.95 0.23
Prager equation

S5 0.88 0.395
S.R9 1.90 0.3775
73 0.95 (.33

4.1, Influence of the constitutive model

Figure 4 shows a comparison among the three assumed constitutive models for two
typical cases: (a) a bilayer with an upper location of the harder material. a yield stress ratio
k,= Yz Y, =2and a thickness ratio r. = (¢—h)i(h—a) = 1.3 (in Fig. 4a), and (b) a bilayer
with a lower location of the harder material and ratios &, = 1/2 and r, = 3 (in Fig. 4b). By
comparing these two cases. it can be seen that there is a wider range of elliptic regions in the
case of a lower harder material. In general. the results obtained by using the Prager equation
and the Voce model are in very close agreement. However. the bifurcation strain from the
Hollomon model is somewhat lower than predicted by the other two.

Note that Prager and Voce equations seem to be more adequate to represent the elastic-
perfectly plastic behaviour in metal forming at high temperature, in the sight of their asymptotic
trend at high strains (see Fig. 3 and (42)—(44)). In the following. the Voce model will be selected
to assess the influence of other parameters on the bifurcation strain.

4.2, Influence of the geometric and material parameters
The results of Section 3 together with the Voce constitutive model will be applied in this
section to elucidate the influence of a number of geometric and material parameters on the
critical bifurcation strain. The following parameters are considered :
—the yield stress ratio k, = Y, Y, (for both possible locations of the harder material).
the thickness ratio r, (also for both locations).
the hardening parameters », and #,.
—the hydrostatic stress parameter p,. defined as:

po=a, Y (49)

Variations of the above parameters are assumed around a set of reference values given in
Table 4. at the two locations of the harder material.

The influence of the vield stress ratio. &,. 1s shown in Fig. 5. for the two standard cases. In
the first place. it is noticed that the wavenumber that limits the elliptic regime from the
hyperbolic one is different in the two cases: ¢, = 2.5in Fig. Saand ¢, = 1 in Fig. 5b. Therefore,
there is a wider elliptic zone when the harder material is placed lower. Furthermore. below the
limit wavenumber. the critical strain decreases as &, decreases. and above it, the higher the yield
stress ratio. the higher the critical strain.

Figure 6 illustrates the influence of the thickness ratio. The results for the upper location
ot the harder material are shown in Fig. 6a. They are very similar below ¢, = 2 (hyperbolic
regime) for the different thickness ratios. However. above ¢, = 2 (elliptic regime). an increase
in the strain can be noticed as the thickness ratio decreases or, equivalently. as the upper layer
thickness decreases. For the lower location of the harder material, Fig. 6b shows the results.
As in Figs 4 and 3. there is a more predominant elliptic region in this case. It is also noticed
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Fig. 4. Biturcation strain lor the three constitutive models. forta) kr = Y. ¥V, =2 re = ¢, ¢, = 113,

(b kr =035 v¢ =3P .17 and "H refer to the Prager. Voce and Hollomon constitutive models.

respectively.)

Table 4. Reference values for the two standard cases selected

Location of the

harder material k, r i,
upper 2 13 12
lower 0.5 3 12

that below the imit of ¢, = 1 the critical strain increases on decreasing the thickness ratio. Above
this wavenumber. the results are very close together, there being no appreciable difference.

Figure 7 illustrates the effect of some other parameters, attention being concentrated on
the case of 4 lower harder material, which appears to originate to more extent spacially varying
deformations. as demonstrated before. Figure 7a shows the influence of the hydrostatic stress
in 4. defined through the p, parameter (see (49)). In the hyperbolic regime (below ¢, = 1). the
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Fig. 5. Bifurcauon strain tor different vield stress ratios. Ar. for: (a) an upper location of the harder
material. (b) a lower location of the harder material.

critical stram increases as p, increases. However. in the elliptic regime (above ¢, = 1), the
opposite trend is encountered. meaning that under a higher hydrostatic stress. bifurcation can
arise at lower strains. On the other hand. the effect of varying the hardening parameter in the
Voce eqn (42) is shown in Figs 7b and 7c. for i, and ;. respectively. It can be seen that the
bifurcation strain decreases as the hardening parameter (either i1, or 1) increases, this indicating
that instability can be promoted with a more hardening material.

S DISCUSSION

The general trend of the biturcation strains m the biaxial loading of the bimetallic layers
between rigid surfaces seems similar to that observed by Steif (1986a.b) for a solid composed
by alternating matenal layers under uniaxial tension. and by Tomita and Kim (1992) for the
nonaxisymmetric bifurcation behaviour of bimaterial tubes subjected to uniform shrinkage at
the external surface. Furthermore. the consistency of the solutions presented in Section 3 has
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{a)

bifurcation strain

wavenumber, qa

bifurcation strain

wavenumber, ga

Fig. 6. Bifurcation strain for different thickness ratios. re. for: (a) an upper location of the harder
material. (b) a lower location of the harder material.

been checked by calculating particular cases reported in Hill and Hutchinson (1975) and Steif
(1986b).

For small wavenumbers. ¢,. (or, equivalently. high wavelengths, /). the critical strain
increases without bounds as ¢, — 0. This behaviour was explained by Steif (1986b) as a
consequence of the incompressibility kinematical restrictions and the continuity of dis-
placements at the interface.

As the wavenumber increases, the critical strain decreases to a minimum, then exhibits
some oscillations and finally tends to an asymptotic value. The minimum is more pronounced
with the Hollomon model than with the Voce or Prager models. The effects of the
geometric and material parameters of the problem on the critical bifurcation strain have
also been analysed. They are discussed below.

The behaviour of the yield stress ratio seems in accordance with that of Steif (1986a).
The increase in the yield stress ratio gives rise to a larger number of elliptic sections in the
bifurcation graphs and a lower minimum bifurcation strain. The same conclusion arises
from the results of Tomita and Kim (1992).
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Fig. 7. Influence on the bifurcation strain. in the case ot a lower harder layer. of the following

parameters : (a) the hydrostatic stress. pr.in 4. (b) the hardening parameter na. (c) the hardening
parameter nh. (Continued orverleat’)

The effect of the thickness ratio. only relevant when the harder layer is placed in the
upper side. can be explained by noting that the effective stress increases as it does the
proportion of harder material.

On the other hand. the impact of the hardening parameter 1s reasonable it we bear in
mind that no material instabilities occur for a rigid-perfectly plastic material (Hill and
Hutchinson. 1975). This behaviour ¢an also be verified from the results presented by Steif
(1986a) and Hill and Hutchinson (1975). where it is concluded that there are more elliptic
(unstable) sections on increasing the hardening rate.

Although the hydrostatic stress does not appear in the governing equations of the
problem,. it does affect the boundary conditions and. therefore, the final bifurcation equa-
tion. In general, an increase in the hydrostatic stress means that the stresses become more
COMpressive.

About the influence of the constitutive model on the bifurcation graphs. the lower
strains obtained with the Hollomon equation (a non-asymptotic model) can be justified by
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Fig 7. (Continued )

taking into account the above comments on the influence of the hardening parameter, since
a Hollomon-type model implies & more hardening material.

Finally. it is illustrative to analyse the results in some especial cases: isotropic
conditions. on one side. and a rigid-perfectly plastic model, on the other.

For the isotropic case, R = 1:2 and the resultant bifurcation strains in the elliptic
regime. obtained from (19), are approximately constant in all the wavelength range. There-
fore. it is verified that the wavenumber does not affect bifurcation for an isotropic and
isothermal behaviour. in agreement with Dudzinski and Molinari (1991). In this case, as
0 =2R—1 < S-. only the elliptic and parabolic regimes are possible. But. as deduced by
Alcaraz (1993), the critical bifurcation strain appears to be equal to the strain limit between
the two regimes. This result agrees with the statement by Hill and Hutchinson (1975). that
the 1sotropic behaviour leads to critical strains (that are accumulation points) in the limit
between the two regimes.

In the case of a ngid-perfectly plastic model. 4 — »x and R — = (see (1) and (9)) and.
from eqn (20d). p,= + 1. r, = 0. If the bifurcation eqn (19) for two elliptic regimes is
divided by (R,— S ) (R,— S,). it can be obtained that there are only two non-vanishing
terms. which reduce to

cos 2y +ygp)] = 1. (50)

Equation (50) means that ¢, + g5 = nn. ne Z. Consequently. given the thickness ratio
(or. equivalently. the ratio ¢, ¢5). there will be a bifurcation strain only for certain values
of the wavelength.

6. CONCLUSIONS

The bifurcation analysis under biaxial loading applied to bilayered sheets between
rigid surfaces has provided interesting results about the repercussion on stability of the
several geometric and material parameters involved in the problem.

Firstly. an increase in the yield stress ratio between the two materials propitiates the
onset of interfacial undulations. This behaviour appears for both locations of the harder
material. Moreover. the case with a lower harder material results in a more unstable
behaviour compared with the opposite case.
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On the other hand, the effect of the thickness ratic between the two materials 1s only
relevant when the harder layer is placed in the upper side. In this case, the bifurcation strain
decreases on increasing the thickness of the upper layer.

The hardening parameter also affects the bifurcation strain. An increase in the harden-
ing parameter of either material promotes the onset of undulations.

The influence of the applied hydrostatic stress in each material is also analysed. The
higher the hydrostatic stress in either material, the more instabilities can arise at the
iterface.

Finally, three constitutive models (Prager. Voce and Hollomon) are considered n the
analysis. It is shown that Prager and Voce equations (both asymptotic to the vield stress)
lead to similar results, while the Hollomon equation (a non-asymptotic model) provides
clearly lower strains.
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APPENDIX A

Deduction of the gorerning devivative equation under « gencral siress state in plane strain
For a more general case in plane strain. the stress state at a point of the interface 1s given by the stress tensor:

W“ 7 0
o G 0 (ALD)
0 0 7

[n order to apply the equilibrium cquations. we will firstly determine the time derivatives of the nominal
stresses. These derivatives are related to Jaumann derivatives and true stresses through (2). By expanding this
expression in the general plane case. the following relations can be obtained for the in-plane stresses:

. s Y
My =00 O Ty
(AW ¢
. ry ‘1
1" -0 7 = 0a
[ [EAY
) 1 e e, oy
0=, I (T S RN (), -6..) 7
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|IEEN cr sy
G+ 0.1) - — (G, —0)—0,: 7. (A2)

1
My =02 — 5 =
20X, 20y

Ys

Using (1) and (A.2}. and introducing the flow function ., the following expressions are attained :

M= = QY o ) oY — e s
byl

Niy= 2=y ) ":W::(Ulw*“::)*%‘fl {6y a0 ) =00 s
"y iﬂ(')/:z”l//.m)ﬂLLW oy —a::) ;U/z:(ﬁu =0 o0, (A3)

The internal equilibrium equations #,,, = 0 lead to:

( I ( .
— U -+ Ty s =0 (A.4)

RIS ‘xs ‘X
Substituting (A.3) in (A.4). the following partial derivative equation can be obtained :

(3 =200 2~ 20,0 :::*'J/‘H:)+[ﬂ+%(‘7. ’“::’]Wuu+[ﬂ'%(“|\ NIV

O F o W 30 30 (0 G 0 W ns
/ Gy o O T Oy { Goy i 4G 0 O =020,
Lot + oy )l// [ k“x: o+ 5 I )'4/ 2
- N - - /
(O Ho oy W =0 (A.5)

On the other hand. the continuity conditions at the intertace will be applied to 7., and #,,, which are defined
by

Aoy =y H:[N*'E(“x G- ’4.1‘*]+W.:::[*!‘*l(”|‘ g+ (=200

LY, =)ty H[,, @,QL:“}Z; —6y- -“wz{ﬂl{;:ﬁ::: fm;_,]+w\:(7(r.33+mli,+03:_,)
nyy = w,[ﬂ:+“”f“—”J+uz;:[u - “#35:3%&_««@). (A.6)
The tunction y can be cxpressed as
w =R [exp(%x\gi)(/u sin Z/rz X +hscos ;/E ,\"1)] =R (A7)

where 2. hy. /i, are complex (in general). and R(x) < 0.
Then. (A.5) turns into

— (& 2R 4+ 20, ot R J)ID‘J+[;4+:((7H—rr::)]u’/(u*+[p—-%[m,—«a;z)]‘mz”‘u})uf

Ty o O RO =30, 0 RO 30, o R (05, — G a0 ) R )
Gyt G T O ) . / g+ 0 T — 050 NS
0122+ o ”:' =+ “;L‘, == )U“/"’i'(“l: ot t;li,,’” EpaL 3 == 1Rz )"
SO =T =G 0 \1)[Ul\~R(1|4;\) =1 (A.8)
where
2n
) =—
/.
W, = EXpleEy-) (i, coswx, —hssinwx,) (A.9)

Equation (A.¥) appears as the most general governing equation for the present plane strain problem. If we
now make the assumptions that the stresses in each material are constant, and that there are no shear stresses
(i.e.. principal directions are assumed coincident with the coordinate axes in both materials), then (A.8) reduces
to

(4t = 210 R(x ) — [u+:to, o )R — (g - ’:(m L= o) R =0 (A.10)

which 1s equivalent to (3).
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APPENDIX B

(98]

Characteristics in the bifureation problem
The characteristic planes of the partial derivative eqn (8) are the planes through which there can be a jump
in the fourth derivatives of . These planes can be obtained by imposing the vanishing of the determinant:

dv,  dy, 0 0 0
0 dy, dy. 0 0
0 0 dv,  dv. 0 | =0 (B.1)
0 0 0 dv,  dxs

R+S O 2XXI-R) 0 R-S
corresponding to the svstem of equations :
d¥ . =¥ dy, =¥ ady
d¥, . =W, dy, +¥ ) ady,
d¥ =W nadyy =W ady
d¥ ..o =¥ o.dy +¥ooady,

O=(R+SY =20l =R .-+ (RS ..o (B.2)
where the last equation ts (¥).
Expression (B.1) provides:

(R=5)dx} +2{l —Rydxidxs +{R~S)dxi =0 (B.3)
which is the characteristic equation of (8). Therefore. if - = dx- dx, (i = | to 4) denotes the roots of (B.3), the
characteristic planes are

CyNy = v, = const, (B.4)

obtained by simple integration. Real charactenstic planes are only possible when (B.3) provides real z,. and this
occurs in the hyperbolic and parabolic regimes.
If we consider

W= Flepx, =0 x0). (B.5)

and apply ¢, =y .. 2 = —y . a velocity parallel to the planes (B.4) and constant on them is obtained. For this
reason. (B.4) is said to represent a local shear field. It is also found that inside a band between two parallel
characteristic planes. an incremental deformation of the type (B.4) is compatible with zero nominal traction
velocity (i.e.. constant loading).

Consequently. the loss of ellipticity of (8) implies the possibility of strain discontinuities in the solid in the
form of shear bands.



