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Abstract A hlfurcatlon method has heen applied 10 the plastic stahility analySIS of a himetallic
sheet between rigid surfaces suhjected to hlaxialloadlllg. An orthotropic. Incrementally-linear solid
and plane strain conditions are assumed. In order to predict the stability behaviour near the
himaterial interface. three possible regimes (elliptic. hyperholic and parabolic) are considered and
two modes ofinstahility are mentioned. namely. the diffuse mode. characterized by spacially periodic
deformations. and the localized shear hand mode. In general. undulations can be expected in the
elliptic regime and shear band instahilities only appear in the hyperbolic and parabolic regimes.
Attention is concentrated on the diffuse mode. CritIcal equivalent strains have heen obtained. as a
function of a wavenumher defined in the analysis. 'si umerical results are presented for three different
constitutIve models and for a number of comhinatwns of the geometric and material parameters.
to assess their influence on the critical strain. COP\ right I l'1lJ6 ElseVIer Science Ltd.

I INTRO[)UTION

Much effort is currently devoted to the design and processing ofbimaterial products because
of their potential ability to combine physical and chemical properties of different materials.
This is a very attractive feature in specific industrial technology. For instance, consider the
use of bimetallic structures in applications where it is desired to combine a high mechanical
strength and a good protection against oxidation and corrosion.

One problem encountered in some metal forming processes of bimaterial layers is the
appearance of thickness fluctuations and occasional decohesion along the interface. basi
cally due to the material heterogeneity and high strains during those processes. The analysis
of this phenomenon. under the point of view of bifurcation and plastic stability. has
motivated the present paper.

Stability of plastic solids has become a relevant research topic in the fields of plasticity
and metalworking. In the case of a single materiaL Hill and Hutchinson (1975) and
Young (1976) investigated the bifurcation phenomenon in an homogeneous incompressible
rectangular block subjected to uniaxial stress under plane strain conditions. Later,
Hutchinson and Tvergaard (1980) considered the existence of surface instabilities in a semi
infinite solid with free boundaries by using either a bifurcation analysis or a quasi-static.
imperfection-growth analysis. A strong dependence on the type of constitutive law assumed
was found. These analyses show that instabilities arc predicted when a finite strain deformation
theory is assumed. More recently. Dudzinski and Molinari (1991) have analysed the ther
moviscoplastic instabilities in a material subjected to biaxial loading by using a perturbation
method. which is proposed as an alternative to the bifurcation method. In this analysis. the
rate of growth of infinitesimal perturbations is obtained for quite general material behaviours.

The analysis is more complex in the bimaterial case. Steil' (I 986b) has considered the
periodic necking instabilities of a solid composed of alternating material layers under uniaxial
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Fig. I. Geomdn of the problem.
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tension. Conditions for periodic incremental deformations. consistent with an overall homo
geneous stretching. are obtained. The competition of the undulatory modes with shear local
ization is also examined. More recently. Tomita and Kim (1992) have considered the non
axisymmetric bifurcation behaviour of bilayered tubes subjected to unifonn shrinkage at the
external surface in plane strain. It is concluded that the yield stress ratio and the hardening
exponent ratio substantially affect the bifurcation mode with long wavelength. Independently,
Suo et al. (1992) have investigated the stability for two semi-infinite solids bonded with a planar
interface. A traction-displacement jump relation characterizes the interface. so that dimensional
considerations introduce a characteristic length. Stability is analysed. with the aid of complex
variable methods. in tcrms of the existence of certain stationary waves.

In this paper. we are concerned with the instability analysis of a bimaterial layer placed
between rigid surfaces and subjected to biaxial loading. The existence of non-unifonn solutions
is investigated by using a bifurcation method. This method is similar. to some extent. to that
of Steil' (1986b) in uniaxial tension: but here we proceed with other boundary conditions and
biaxial stress states. and furthennore. a ditlcrent resolution procedure and a more complete
analysis are presented. The bifurcation equation for the problem is established and solved
numerically to obtain a critical strain in tenns of a characteristic wavenumber. for different
values of the geometric and material parameters of the process. The influence of the relevant
parameters on the bifurcation behaviour is discussed.

Three ditferent constitutive models are considered in the calculations (the so named Voce.
Prager and Hollomon models). In the bibliography. attention is given especially to the last one,
the Hollomon model. which is not adequate to describe the actual material behaviour at high
plastic strains. especially at high temperatures. The two other models seem. however. more
appropriate under such conditions.

It should be noted that this study could be applied. as a first approximation. to different
metal f0n11ing processes involving a bimaterial composite under a biaxial stress state.

~. GOVERNINCi EQtATIO~S

Consider a plane bilayer consisting of two materials with finite thickness and infinite
length: A (between .\, = a and x, = h) and B (betweenr. = h and Xc = c). the set being limited
by two rigid surfaces tixed at X, = a and .r, = c. as shown schematically in Fig. I.

Incompressibility. plane strain conditions. as well as time independent behaviour. are
considered in the model. Assume that the deformation up to a certain instant is homogeneous.
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with principal axes XI andy,. and that both materials, A and B. are orthotropic along these
axes.

Assuming that the hydrostatic pressure does not influence the constitutive relation between
the deviators of stress rate and strain rate. the constitutive law for incrementally linear solids
necessarily has the following structure (Biot. 1(65):

"I I -", , = 211*(;: ! I -I:" )

"I . - 2WI ", = 0' I ~ ( I)

where (;" is the Jaumann derivative (reterred to the rotating axes) of the true stress: t" is the
eulerian strain rate. I:,! = (I,!+ I"!,) 2.1", being the velocity and ( ), denoting partial differentiation
with respect tOY,. II and /1* are two incremental shear moduli. At the moment of the analysis.
the stress components are (J II = "I and "cc = "~. It is assumed that the current stress components
arc uniform in each material. As shown in Fig. I. (JI can be different in A and B.

It is convenient to express ( I) in terms of nominal stress rates '·7,!. which are related to
Jaumann derivatives and true stresses through the expression:

( 7
/1, = if;; + (JI~ H'.',~ - (i,/., \1',/, (Ji~

1\,
(2)

where II',! is the spin tensor. II" = (1" ,- I"!!) 2. and the convention of summing over repeated
indices is applied.

By using the incompressibility condition (1",. = 0) and introducing a flow function 1/1(.YI' xc)

so that 1"1 = i'lj; i'y~. 1", = -i'lj; ('XI' the equilibrium equations ,i!lf = 0 lead to the following
partial derivative equation:

(3 )

This equation can also be obtained as a particular case of a more general equation deduced in
Appendix i\.

On the other hand. the continuity conditions at the intert~lCe are:

at \' = h (4)

where the third equation replaces. for convenience. the continuity condition of the normal
component of the nominal stress rate.

Equations (4) can be rewritten in temlS of Ii; as:

;0 i'lj;
0=

(Y I Y,

=0

=0 (5)
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where the sign <>indicates the change in the enclosed magnitude on crossing the interface at
X2 = h.

Finally. the boundary conditions are expressed as:

1"~ = 0 atY 2 = c

and in terms of ljJ :

(6)

= 0:

Equation (3) is more shortly written as:

i:l/;B I

tXI ,
= o. (7)

with the following notation:

(8)

PR= .
2p*'

(9)

, EIGENMODES AND BIFURCATION EQUATION

Suppose that an increment in the far field displacements is applied at a given instant. We
confine attention to analysing whether a non uniform solution is possible. In particular, let us
seek for periodical solutions at the neighbourhood of the interface in a separate variable form,
as follows:

2JrY I

l/; =f(·Y2)sin-.····
/.

(10)

where ;. is the wavelength of the deformation in the XI direction andf(x2) has to be selected so
that 1"1 and 1"2 verify the continuity conditions.

When (10) is introduced in (8). a fourth-order differential equation is found for the
function( whose characteristic equation has the following roots:

(~=ll...±" (R_I)2~(R2~S2)

R-S
(II)

There will be. in general. two distinct roots for ::;2. the character of the solution depending on
whether the roots are real or not. Following the classical notation used in this field, the regime
is said to be elliptic (E). hyperbolic (H) or parabolic (P) according to whether there are zero,
four or two real roots, respectively. for the characteristic equation. Some comments on the
meaning of the characteristics of (8) are included in Appendix B. In view of (10). the three
regimes are determined by:

(E) zero real roots: R> (I +S2) 2 or (I +S2)2 > R> Sand R < I

(H) four real roots: S<R<(I+S2)2 and R>l

(P) two real roots: 5; > R

(12a)

(l2b)

(l2c)

Not all the values of Rand S are possible. As demonstrated by Hill and Hutchinson
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(1975), there is a condition excluding the possibility of first-order bifurcation for incrementally
linear materials. This condition is associated with the principle that the loads do less work than
expended internally. and leads to the relations:

and (13)

In terms of Rand S (for positive Rand S) :

(JC + (J~
R >~-~S == as and

(Ji - (J~

(14)

If (JI > (Jc > O. then a > I and h < 1. For this case, Fig. 2 shows the different regions and
boundaries in the space R - S (R > O. S > 0). Note that the elliptic zone contacts the hyperbolic
region (for S > I) as well as the parabolic region (for 0 < S < I).

3.1. Elliptic regime in A and B
According to (12a). there will be no real roots in A and B when R > (1 +SC)i2 or both

(I +S2)2 > R > Sand R < I are satisfied in each material. The functions f, and fs which
make the boundary conditions (7) be verified can be expressed for a symmetric mode and
Xc> o--as:

(15a)

(15b)

where 9\ denotes the real part of the enclosed quantity. hi and h2 are complex constants. and,
according to (II).

R

ab

R=aS
R=S

ELLIPTIC"

PARABOLIC

b 1
s

Fig. 2. A representation of the characteristic regimes.
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T = R,-=-l ±_v5',-~, + 1
R,-S,

(16a)

(16b)

By imposing the continuity conditions (5) at the interface and after doing some algebra,
the following homogeneous system is obtained

~H\hl 'sinq~x-h, 'sinqB!J: = 0

~H:hl 'x'cOs(/~x+h, '!l'cosqB!1] = 0

~H ~hl [(R, - S,)x' - (R, +5', - 2)]x cos qp+ sh,[(Rr;- 5B )!1' - (R s + 5~- 2)]fJ cos qBfJ} = 0

~ :h l [x'(R, -5,) - (R,-S,j] sinq,x- sh,[fJC(Rs -5tJl -(RI!-5~)] sinqBfJ) = 0 (17)

where

5
In In

qA =-: (h-a). qs =-.-(c-b).
/. /.

" Il~
(=-
. JJ.~

(18)

The resolution procedure of the equation system (17) is as follows: from the first two
equations of (17). we express the real and imaginary parts of he in tenus of those of hi ; then
they are inserted in the last two equations of (17) and hi is eliminated. After lengthy manipu
lations and denoting x = p., + iI',. fJ = PH + irH' the following bifurcation equation is deduced:

+4(R, - 5 ~ )(RH- SH)(P,S/ +1' 4S;~ )(PB.1; + rBI'~)

where. to be concise. the following notation has been used:

.1/, = sin lpq. c/, = cos lp(!. .I, = sinh 2rq. C, = cosh 2rq

x = '\ (R+5)(R-5)

(

S' '),,\
5" = RS' -- - -~. -)(R-5)

and PI' r" are given by

(19)

(20a)

(20b)

(2Oc)
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, 2R~ +S4-1
P4 =-J----:

~(R,-S,)

, S,+ Ir-, = "-._ -
2(R,-S,)

(20d)

3.1.1. Parlicu/ar cases. Consider now two particular cases: (a) a monomaterial case and
(h) a bimaterial case under uniaxial state. Since these cases are reported in other related papers
mentioned in Section I. they will be used to check the consistency of all the results along this
section.

(a) Monomaterial case
Suppose that ~ --> 0 (i.e.. pt = 0 or Ii"; --> J. ). This situation is equivalent to the case of

only material A existing. Then (19) reduces to

,. j sin 2q4P,
---_._--

P, sinh 21f,r,

S'; + X \( I -- ":" )
--~ ---- ---------

S",- X,( 1- 5",) .
(21 )

Moreover. in a uniaxial prohlem. (21) changes into:

r , sin 21f~p 4

P \ sinh 2lfl r ,

5', + X, ( I - ,'l , )

S,-X,(I-S\)
(22)

which coincides with the result obtained by Hill and Hutchinson (1975) for a single rectangular
material under tension.

Similarly. in the case ~ --> :1_ (p"; = 0 or lit --> x). as if only material B is present. we
ohtain:

r ll sin 2lfBPB
---- --

PHsinh2lfBrB

S~ + XB(l- S~)
--- -----

5~-XB(l-5~)
(23)

which is exactly (21) hy replacing A by B.
(b) Uniaxial state
If one of the biaxial stress components is negligible (for example, (J2« (JI)' then:

S' ~ S ~ (JIAp* : S' ~ S. and (19) reduces to the solution presented by Steil' (l986b).

3.2. Hrpcrho/ic regime in A and elliptic in B
Let us now analyze the case of A being in the hyperbolic regime (B remaining elliptic).

Then. according to (12b). there will he four real roots in A when the conditions

1+5 2

" > R, > 5, and R 4 > I

are fulfilled. The appropriate functionl, is now written also for a symmetric mode- as:

2n 2n
!,(y:)=cl'sin .p,CY,-0)+c2'sin. r 4(.r,-0)

~ ~

(24)

(25)

where CI and C2 are real constants. and p 2
, > 0 and ,.2, > 0 are the solutions for 7

2 (see (16a».
The functiont~ is given by (15b), {32 remaining complex in the form If = PB+irR (see (l6b)).
It can also be checked that the function ijJ, obtained from f4 satisfies the first boundary
condition in (7).

The continuity conditions at the interface (5) lead to:

CI 'sinp41f, +c, . sinr ,i/.4 = ~H :h,' sin IfRIl:

(i ' p., 'cos P4111 +(: . r , cos 1',11, = ~Ii: - h2 ' Ij· cos IfH/j:

(2-R, -5")((1 'p, 'COSP,I!, +(2 'I', cosr~I/.~)
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+(Rs-Ss)~R: -hc ' {l' 'cosqs!JJJ

(R,-Sj)(c, 'pCj sinpAqj +C2 'r~ sinr~ q~)-(R4 -5'1)(CI 'sinpAqA +C2 'sinr~qA)

By expanding the ~ tenns in (26) and eliminating the constants CI and ('2' the following
bifurcation equation can be obtained:

(R\ - S,)C [(h - p~)2 W,~Ql" - (h - r~)C WI'IQ,I][rss: - Pss~]

- 2~(R~ - S~)( Rs - Ss) a(h-p~) W,~Q!; - (h - r~) Wr~Q;~][rs(1 +Xs)s:'

+ Ps(Xs - l h~] -IJsrs(P~ - r~ )[W;I W,' «('~ - c:'H XsQ,~Qpl (c~ +c:,)]]

+2((Rs-Ss)[W,~Qr; - WI"Q;~HrS[(l-S;i)XS-S~]s:'+Ps[(l-S~)XB+S~]S~]] = 0

(27)

where the new notation is:

R\-S'~
h'=·---··

RI-S~

QI' = sinpq, Q, = sinrq. W~, = pcospq, W, = rcosrq.

3.2.1. Particular cases. (a) Monomaterial case
If ~ ---> 0 (i.e., only material A is present). we obtain the following solution:

r~ tan p ..lq, _ ("',1 _r~)2
--_.... _.. ----_.

PA tan rlq, h, - p~

(28)

(29)

Now. if the stress state is uniaxial, then h: , = 1 and we recover the solution by Hill and
Hutchinson (l975) for the tension test of a rectangular material.

Likewise, if ~ ---> x. (only B), we attain to the same expression given by (23).
(b) Uniaxial state
For the uniaxial stress case, the solution can be obtained by setting h: = I (in A) and

S' = S" = S (in B), and coincides with that of Steif (1986b).t

3.3. H~pcrh()!i(' regime in A and B
Now consider the situation where both materials are in the hyperbolic regime. Then

relations (12b) hold in A and B.
The functionsl; andf~ are now given by :

2rr 2n
11(.\2) = CI 'sin . p;(xc -a)+c2 'sin--:-r;(xc -a)

I. I.

2rr 2rr
fs(xJ = d l 'sin . PB(c-x2)+dc 'sin--=-rs(c-x2 )

I. I.
(30)

where p~ and r~ are the solutions for '1
2

: p~ and r~ are the solutions for !J2 (see (l6a,b)), and
cl,cc, dl• dl E~. It is easy to check that the corresponding JjJ functions verify the boundary
conditions (7).

The interface conditions lead to:

t An error in Steil' (19X6b) [eqn for case (iii) in Appendix] has been detected: on the second line. (l_p~)2

and (I - r~)' should not be squared and read as (I -- p~) and (I -- r~ )



Interface stahility I 611

(, Q;; +ccQ;l -d, Q% -d:Q~ = 0

c i ~l'r" + Cc W;I +d l W% +d: W~ = 0

(\I', +{I,)cl Wr' +()I', -{i,)cc W;1 -+-';(\I'H+OH)d l W:, + ';(H'H-fJB)dc W~ = 0

()1, - fJdc, QI" + (\I, + fi,kcQ/ - ';(\lB - 0B)d] Q:' - ';(\1'8 + ()B)dcQ~ = 0 (31)

where Qr Q" WI' and W, are again given by (28) and

\I = I -S'

0= \. SC -2R+ l. (32)

The elimination of the constants CI' CC' d l and dc can be accomplished by imposing the
vanishing of the determinant of the system, After several manipulations. the following bifur
cation equation is achieved:

(R, - SJlc [(hi - P:I): It,1 Q r' - (h', - rC,)C Q,' Wpl](Q: ~V:, - Q% W:)+ ';C(RB - 58)'

X [(hH -p~): ~V:Q:' - (h H-r~):Q,BW%](Q,1 WI" - Q/ W,') +2';(R, -S,HRH-SB)

x [(1\, - p:, )(h'8 - P~)Qr,1 Q% H,,' W~+ (1\, - r C
I )(h'B - r~)Q,'Q~ WI; W:,

- (h" -pc, )(1\8 _r~)Q!,'Q,BW,' H7{~ - (1\ ~ _rc,)(hH-P~)Q,'Q:'WI" W,H

3.3,1, Particular ('(l,\CS, (a) Monomaterial case
For'; ---> 0 (only material A), (33) turns into (29), And for'; --> x (only B), the resultant

expression IS :

which is the same as (29) by replacing A by B
(b) Uniaxial state
For the uniaxial stress state. the solution can be obtained by replacing 1\, = 1 and 1\8 = I,

and is coincident with that of Steil' (1986b),

3.4. Paraholic rcgilllc in A, elliptic in B
Finally. consider the case where A is in the parabolic regime (only two real roots) and B

remains elliptic, For this case:

R, <S,

and the elliptic relations given by (12a) hold in B, The functionf~ is now written as:

2n 2n
I,(r,) = c i 'sin , p~(,rc-a)+c: 'sinh I',(.\':-a)

I,

where

(35)

(36)
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2 - (R, - I) +" .11'2, - 2R, + 1
P, =----, -----~--- > 0

5,-R,

2 (R1 -1)+y SC,-2R,+1
r

4
= ---- -- ;--- --- -- > 0

54 - R1

(37)

It is interesting to note that eqn (36) t(Jr the p~@bolic regime in A can be reduced to the
hyperbolic one by replacing r 4 by ir" (where i = y - I) in (25) and making use of the identity
sin(ix) = i sinh (x). x E~. Therefore. we can obtain the bifurcation equation for this case
directly from (27) as:

(R 1- S,)C [(I-: - p~)C V;IQr; - (I-: + rC,)C W
I
,'G,1] [rs.\·:; - PR\~] - 2s(R4 - S1 )(RB- SB)

x -~ [(I-: - pC,) ~ ','Q,,' - (I-: + r~) W,; G,'][rB( 1+ XR)s:' + PB(XB-I )S,B]

- PBrB(p~ + r~)[ ~tp' V: (c~ - c:') + .rRG,' Q1" (c~ +c:')];

+2( (R B - ·)'R) [V. ,Q r: - WI,'G,I] :rR[( 1- '<';;1),,"',, - S~]s:'

+PB[(I-S~)XIi+S~]S~3]; = 0

where

V;' = r,coshr,(!,. G,' = sinhr,ql'

3.4.1. Particular cases. (a) Monomaterial case
If s---> 0 (only A). (38) reduces to:

(38)

(39)

(40)

which coincides with that deduced by Hill and Hutchinson (1975). This solution could also be
obtained from (29) by replacing r, by iI',.

On the other hand. if s---> x (only B). solution (23) is attained.
(b) Uniaxial state
We could also obtain the solution for the uniaxial case. by setting I-: = 1 (for A) and

S' = S" = S (for B) in (38). This instance is not considered by Steil' (l986b).

4. RESliLTS

In this section. the results obtained for the bifurcation strain as a function of different
geometric and material parameters are presented. The material is assumed to obey a constitutive
equation in the form

(f = 6'(1') (41 )

where (j and E are the equivalent stress md strain. respectively. Three constitutive models have
been considered in the calculations:

(i) Voce model: (J = C(I-me '''')

(ii) Hollomon model: (j = ki'!'

(iii) Prager model: (j = Ctanh ('II:)

where C. k. Ill. 11 are constants.

(42)

(43)

(44)
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Table I. Constants in the constitutive models
('is'!!;, criterion)

Model Constants

Voce
Hollomon
Prager

c= LIII =
/.. = y
C = }'

17 = 12
17 = (1.04
/I = 7.)

From several torsion tests (Lopez-Soria. 1993). performed on steel AISI 4130. Incone1625
and Incolloy 825. at high temperatures and strain rates (similar to those of hot meta] forming),
it can be concluded that:

a peak stress is reached at an equivalent strain of about 0.25
by neglecting the small int1uence of softening by dynamic recovery. a perfectly plastic

behaviour could be assumed beyond that peak stress.
Accordingly. constants in (42) (44) have been selected so as to give 95% of the maximum

stress. Y. at an equivalent strain of 0.25. The resulting values are included in Table I. The
stress-strain curves obtained with these constants are compared in Fig. 3. Ex.perience confirms
that although the Hollomon model provides a good approach for small strains. the other two
models behave more accurately at high strains.

For a constitutive law in the form of (41). the magnitudes K S. S' and ;. defined by (9)
and (18). are given by:

II
R=

2Jl*
'\ 3 0' coth~" 3n
2 dO'

di'

• rT l -rT,
S = ---- --;---

4,u"

L) 0'

2 dO'

di:

(dO'di:)R

(dO'di:)/
(45)

de
"

where rTj, is the hydrostatic stress. the incremental shear moduli are defined by the relations:

1.2

'"

1
'" -----------0

='""'=' Hollomon
"0
'>'
0 0.8-5
B
"'='0
N

~ 0.6
E
0
I:

'"'"~ 0.4
'"C
llJ

(;J
;>
'S 0.2c-
o

1.61.41.20.80.60.40.2
OL----'-----'------'------L---'----~---'------'

o

equivalent plastic strain

Fig .'. :'\.onna!l7ed eljuivalent stress-strain curves for the three constitutive models.
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I d(a l -ael

2 dl;1
(46)

and the equivalent stress and strain for plane strain conditions are given by:

(47)

The expressions for R. S. S' and s for the three constitutive models are included in
Table 2.

From an inspection of (45), it can be seen that the parabolic regime is not possible for the
second constitutive relation (41), because the condition R < S can never be accomplished
(cothx > I,xE~). Therefore, only elliptic and hyperbolic regimes are to be considered. The
limit between both regimes is defined by the conditions: 2R - 1 = se and R > 1. This limit is
shown in Table 3 for different values of the hardening exponent. n, in the constitutive laws.

The bifurcation equations presented in Section 3 can be solved numerically in terms of the
wavenumber qA (=2n(b-a);I.) to obtain the strain eigenvalues. For each wavenumber. a set
of solutions is obtained. The critical equivalent strain will correspond to the minimum of these
eigenvalues. Below this minimum. no bifurcation occurs. Calculations have been carried out
for different values of the geometric and material parameters involved in the model, and for
the different constitutive laws.

The range of wavelengths used in the figures has been estimated in terms of the geometric
dimensions of the problem. If A denotes the amplitude of the wave and m the amplitude relative
to the thickness. m = A;(b-a). then the wavenumber can be rewritten as

2n A
ql =

m I.
(48)

For a typical relation Ai. = 0.1 (see Gao. 1991) and assuming that the amplitude A varies
between 10 and 20% of the thickness b-a (m = 0.10.2). the wavenumber qA should vary
between 3 and 6.

Table 2. Expressions of the parameters in the bifurcation equation for the three constitutive models

Voce

Hollomon

ij = kit'

Prager

ij = Ctanh (nn

3 (em.. -
R = ",- - - I )coth (, 3n

_11 HZ )

s =" (J"

2 Cnme !I

3 I'
R = ' coth ( 3n

::: II "\

, 1
R ~ "- - sinh (2m') coth (v 31'1

.2 211

s = ~ "I, cosh:2 CII . (liE)

S=v3(~'_I)
In \111 /

':=k,~ft-~ II;

- n_
l

-

3 1
s =\- ~ sinh (2m')

~ _n

CRnB cosh' (/1,n

= (~, ~sh' (IIBE)
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Table 3. Limit strain between elliptic and hyperbolic regimes for the three
types of constitutive equations and for different hardening parameters

615

/I (J Y at I: = 0.25 elliptic-hyperbolic limit

~

~

12
16

OJ
0.076
0.04

'.~9

Voce elJuation
0.63
0.X65
0.95
09~

Hollomon equation
0.~7

090
n.95

Prager eq uation
O.~X

0.90
D.95

0595
0415
(133
(Un

1137
032
on

0.395
0.3775
033

4.1. fnttuence of the col1.\titutire model
Figure 4 shows a comparison among the three assumed constitutive models for two

typical cases: (a) a bilayer with an upper location of the harder materiaL a yield stress ratio
k, = Ys Y, = 2 and a thickness ratio r,. = (c-h):(h-a) = I 3 (in Fig. 4a), and (b) a bilayer
with a lower location of the harder material and ratios k, = 1/2 and r,. = 3 (in Fig. 4b). By
comparing these two cases. it can be seen that there is a wider range of elliptic regions in the
case of a lower harder material. In generaL the results obtained by using the Prager equation
and the Voce model are in very close agreement. However. the bifurcation strain from the
Hollomon model is somewhat lower than predicted by the other two.

?\iote that Prager and Voce equations seem to be more adequate to represent the elastic
perfectly plastic behaviour in metal forming at high temperature, in the sight of their asymptotic
trend at high strains (see Fig. 3 and (42)-(44)). In the following. the Voce model will be selected
to assess the influence of other parameters on the bifurcation strain.

4.2. fnttl/ence of {he geome{ric and material parame{i'r.l'
The results of Section 3 together with the Voce constitutive model will be applied in this

section to elucidate the influence of a number of geometric and material parameters on the
critical bifurcation strain. The following parameters are considered:

-the yield stress ratio k, = Ys Y j (for both possible locations of the harder material),
the thickness ratio r, (also for both locations),
the hardening parameters n" and n/>.

--the hydrostatic stress parameter p,.. defined as:

(49)

Variations of the above parameters are assumed around a set of reference values given in
Table 4. at the two locations of the harder material.

The influence of the yield stress ratio. k,. is shown in Fig. 5. for the two standard cases. In
the first place. it is noticed that the wavenumber that limits the elliptic regime from the
hyperbolic one is different in the two cases: ((j = 2.5 in Fig. 5a and qA = I in Fig. 5b. Therefore.
there is a wider elliptic zone when the harder material is placed lower. Furthermore. below the
limit wavenumber. the critical strain decreases as k, decreases. and above it, the higher the yield
stress ratio. the higher the critical strain.

Figure 6 illustrates the influence of the thickness ratio. The results for the upper location
of the harder material are shown in Fig. 6a. They are very similar below qA = 2 (hyperbolic
regime) for the different thickness ratios. However. above qA = 2 (elliptic regime), an increase
in the strain can be noticed as the thickness ratio decreases or. equivalently. as the upper layer
thickness decreases. For the lower location of the harder materiaL Fig. 6b shows the results.
As in Figs 4 and 5. there is a more predominant elliptic region in this case. It is also noticed
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(a)

J. L Alcaraz e{ al.

Fig. of. Bifurcation strain ror the three C'1l1stitutlve models. for la) kr = Y, Y, = :!. re = e. '" = 13.
(b) kr = U.5. 1"(' ,= 3. ('p', .,- and 'ff refer to the Prager. Voce and Hollomon constItutive models,

respecti\ely. )

Table 4. Reference values ror the two standard cases selected

Location of thc
harder material k. /I, fl" P:' p;'

Lipper 12 12
lower OS 12 12

that below the limit or£f, = I the critical strain increases on decreasing the thickness ratio, Above
this wavenumber. the results are very close together, there being no appreciable difference,

Figure 7 illustrates the effect or some other parameters, attention being concentrated on
the case of a lower harder material, which appears to originate to more extent spacially varying
deformations. as demonstrated before. Figure 7a shows the influence of the hydrostatic stress
in A. defined through thep, parameter (see (49)). In the hyperbolic regime (below £fA = I), the
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Fig. 5. Hifurcalion stram for different yield stress ratios. kr. for: la) an upper location of the harder
material. (hI a lower location of the harder material.

critical strain increases as J!, increases. However. in the elliptic regime (above 'II = I I. the
opposite trend is encountered. meaning that under a higher hydrostatic stress. bifurcation can
arise at lower strains. On the other hand. the effect of varying the hardening parameter in the
Voce eqn (42) is shown in Figs 7b and 7c. for fI" and fI,,, respectively. It can be seen that the
bifurcation strain decreases as the hardening parameter (either 11" or nh) increases. this indicating
that instability can bc promoted with a more hardening materiaL

" DISClSSIO'i

The general trend of the bifurcation strains in the biaxial loading of the bimetallic layers
between rigid surfaces seems similar to that observed by Steif (1986a.b) for a solid composed
by alternating material layers under uniaxial tension. and by Tomita and Kim (1992) for the
nonaxisymmetric bifurcation behaviour of bimaterial tubes subjected to uniform shrinkage at
the external surface. Furthermore. the consIstency of the solutions presented in Section 3 has
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Fig. 6. Bifurcation stram for different thickness ratios, rl'. for: (a) an upper location of the harder
materiaL (b) a lower location of the harder materiaL

been checked by calculating particular cases reported in Hill and Hutchinson (1975) and Steif
(1986b).

For small wavenumbers. q.j. (or, equivalently. high wavelengths, i.), the critical strain
increases without bounds as q.j -. O. This behaviour was explained by Steif (1986b) as a
consequence of the incompressibility kinematical restrictions and the continuity of dis
placements at the interface.

As the wavenumber increases. the critical strain decreases to a minimum, then exhibits
some oscillations and finally tends to an asymptotic value. The minimum is more pronounced
with the Hollomon model than with the Voce or Prager models. The effects of the
geometric and material parameters of the problem on the critical bifurcation strain have
also been analysed. They are discussed below.

The behaviour of the yield stress ratio seems in accordance with that of Steif (1986a).
The increase in the yield stress ratio gives rise to a larger number of elliptic sections in the
bifurcation graphs and a lower minimum bifurcation strain. The same conclusion arises
from the results of Tomita and Kim (1992).
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The effect of the thickness ratio. only relevant when the harder layer is placed in the
upper side. can be explained by noting that the effective stress increases as it does the
proportion of harder material.

On the other hand. the impact of the hardening parameter is reasonable if we bear in
mind that no material instabilities occur for a rigid-perfectly plastic material (Hill and
Hutchinson. 1975). This behaviour can also be verified from the results presented by Steil'
(1986a) and Hill and Hutchinson (1975). where it is concluded that there are more elliptic
(unstable) sections on increasing the hardening rate.

Although the hydrostatic stress does not appear in the governing equations of the
problem. it does affect the boundary conditions and. therefore. the final bifurcation equa
tion. In generaL an increase in the hydrostatic stress means that the stresses become more
compressive.

About the influence of the constitutive model on the bifurcation graphs. the lower
strains obtained with the Hollomon equation (a non-asymptotic model) can be justified by
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taking into account the above comments on the influence of the hardening parameter, since
a Hollomon-type model implies a more hardening material.

Finally. it is illustrative to analyse the results in some especial cases: isotropic
conditions. on one side. and a rigid-perfectly plastic modeL on the other.

For the isotropic case. R = 1,i2 and the resultant bifurcation strains in the elliptic
regime. obtained from (19). are approximately constant in all the wavelength range. There
fore. it is verified that the wavenumber does not affect bifurcation for an isotropic and
isothermal behaviour. in agreement with Dudzinski and Molinari (1991). In this case, as
0= 2R- I < SC. only the elliptic and parabolic regimes are possible. But. as deduced by
Alcaraz (1993), the critical bifurcation strain appears to be equal to the strain limit between
the two regimes. This result agrees with the statement by Hill and Hutchinson (1975), that
the isotropic behaviour leads to critical strains (that are accumulation points) in the limit
between the two regimes.

In the case of a rigid-perfectly plastic model. Ii --> x and R --> x (see (I) and (9)) and,
from eqn (20d). PI = ± I. r, = O. If the bifurcation eqn (19) for two elliptic regimes is
divided by (R, - S,)( RH - 5·H ). it can be obtained that there are only two non-vanishing
terms. which reduce to

(50)

Equation (50) means that q,+qH = 111[.I1EZ. Consequently. given the thickness ratio
(or. equivalently. the ratio q~qB)' there will be a bifurcation strain only for certain values
of the wavelength.

6. CONCLUSIONS

The bifurcation analysis under biaxial loading applied to bilayered sheets between
rigid surfaces has provided interesting results about the repercussion on stability of the
several geometric and material parameters involved in the problem.

Firstly. an increase in the yield stress ratio between the two materials propitiates the
onset of interfacial undulations. This behaviour appears for both locations of the harder
material. Moreover. the case with a lower harder material results in a more unstable
behaviour compared with the opposite case.
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On the other hand, the effect of the thickness ratio between the two materials is only
relevant when the harder layer is placed in the upper side. In this case, the bifurcation strain
decreases on increasing the thickness of the upper layer.

The hardening parameter also affects the bifurcation strain. An increase in the harden
ing parameter of either material promotes the onset of undulations.

The influence of the applied hydrostatic stress in each material is also analysed. The
higher the hydrostatic stress in either materiaL the more instabilities can arise at the
interface.

Finally, three constitutive models (Prager. Voce and Hollomon) are considered in the
analysis. It is shown that Pr(lger and Voce equations (both asymptotic to the yield stress)
lead to similar results, while the Hollomon equation (a non-asymptotic model) provides
clearly lower strains.
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APPE!\[)IX \

f)cdUcliO!l ul !he (jo!"crnill(j dcril'ufiu-' ((lillI/ion IIndcr (/ 9('I/('ro/,(,.('s.\ slU{(' in pia}]£' ,\{rain
For a more general case in plane strain. the stre" state 'It a pnint of the interface IS given by the stre" tensor:

i
rij

I
(/i II

l!:' r; II (A.I)

II II rj

In order to apply the cqullibnul1l equation,. I'C Will first" determille the til1le derivatiws of the 1ll'l1llllal
stresses. These denvati\es are related to Jaumann deri\atiws and true stresses through (2). By expanding this
expression in the general plane case. the following relatrons can be obtained for the in-plane stresses:

III I =- rT, I

(-I"I (/

(): - (J,
- l~.\" ~ - (\
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I ,'r,
11~1 =d:I--l~l(i,l---t-(J:)

~ (XI
(A.2)

USIng (I) and (A.2). and introducing the flo\\ function t/J. the following expressions are attained:

(I, , -- Ii., = 41/*1/1 " + rJ" (1/1 , I + If;,: ) - rJ, ,Vii: - u" t/J I,

Ii" = 1/(1/1:: -t/J,,) (rJ" -rJ::) -'1/1.1 (rJ" rJ,,! - rJ"I/1"

The Internal equilibnum equations n". = 0 lead to:

(A.3)

(

c.---c;--(Ii,
(X I (·X.:

,
Ii.·) + -- (I"

IX:

(A.4)

Substituting (A.3) in (A.4I. the follo\\Ing partial dcrivative equation can be obtained:

(J I -. ~ ~ (J+ --_._- U I ,

+

(A.5)

On the other hand. the continuity conditions at the interface \\ill be applied to Ii" I and n". Which are defined

(A.6)

The functIOn 1;J can be expressed as:

(A.7)

where ~. hi' h, are complex (m general). and ~(~) < O.
Then. (A.5) turns into:

where

~, = eXPI")~.\,)(h, Cos(!)x,-h,sinuH,)

rJ,I." ~rJ"" ')~(~'~)ItJ'
- J

(A.8)

(A.9)

Equatlon (A.X) appears as the most general governing equatIOn for the present plane strain problem. If we
now make the assumptions that the stresses in each material are constant. and that there are no shear stresses
(i.e .. pnncipal directions are assumed coincident with the coordinate axes in both materials). then (A.8) reduces
to

(A.IO)

which is equivalent to 131
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Ch(/rac(~ris(ics in (Iw hi!urca(um prohlem
The characteristic planes of the partial derivative eqn IS) are the planes through which there ean be a Jump

in the fourth derivatives of 1jJ. These planes can be obtained by imposing the vanishing of the determinant:

dx , d.\: () () (J

() dx, dx: () 0
() 0 dx , d.\: 0 =0
() 0 () d.\; dx.

R-+-S 0 2(I-RI () R S

corresponding to the "stem of cq uations :

d If' I I = If' I I I dx I -t- If' II I: d.\:

dlf', . ~ If' i ".d.\, -+-If' ".:d.\.

dlf' I" = If' ""d.\, -+-If' ,:"dx.

dlf' = If' ,,,.d.\, + If' ""d.\.

(J= (R+S)'I"i,,-2(1·-R)If' il,,+(R S)If'""

where the last equation IS (S).

Expression (B.l) provides:

(B.l)

(B.2)

IB.3)

which is the characteristic equation of (8). Therefore. If:. = d.Y. dx , Ii = I to 4) denotes the roots of (BJ). the
characteristic planes are

CI·Y I -C-=,X.2 = const. (BA)

obtained by simple Integration. Real charactenstic planes are only possible when (B.3) provides real :,. and this
occurs in the hyperbolic and parabolic regimes.

I f we consider

IjJ = Flc,\, -,:x.). IB.5)

and apply /1 = 'iJ" /. = -;j;,. a velocity parallel to the planes (BA) and constant on them is obtained. For this
reason. (BA) is said to represent a local shear field. It is also found that inside a band between two parallel
charactenstic planes. an incremental deformation of the type (BA) is compatible with zero nominal traction
velocity (i.e., constant loading).

Consequently. the loss of ellipticity of IS) implies the possibility of strain discontinuities in the solid in the
form of shear bands.


